A functional spiking neuron hardware oriented model
نویسندگان
چکیده
In this paper we present a functional model of spiking neuron intended for hardware implementation. The model allows the design of speedand/or area-optimized architectures. Some features of biological spiking neurons are abstracted, while preserving the functionality of the network, in order to define an architecture easily implementable in hardware, mainly in field programmable gate arrays (FPGA). The model permits to optimize the architecture following area or speed criteria according to the application. In the same way, several parameters and features are optional, so as to allow more biologically plausible models by increasing the complexity and hardware requirements of the model. We present the results of three example applications performed to verify the computing capabilities of a simple instance of our model.
منابع مشابه
An Functional Spiking Neuron Hardware Oriented Model
In this paper we present a functional model of spiking neuron intended for hardware implementation. The model allows the design of speedand/or area-optimized architectures. Some features of biological spiking neurons are abstracted, while preserving the functionality of the network, in order to define an architecture easily implementable in hardware, mainly in field programmable gate arrays (FP...
متن کاملA Hardware Implementation of a Network of Functional Spiking Neurons with Hebbian Learning
Nowadays, networks of artificial spiking neurons might contain thousands of synapses. Although software solutions offer flexibility, their performance decreases while increasing the number of neurons and synapses. Embedded systems very often require real-time execution, which do not allow an unconstrained increasing of the execution time. On the other hand, hardware solutions, given their inher...
متن کاملHardware Optimization of a Novel Spiking Neuron Model for the POEtic Tissue
In this paper we describe the hardware implementation of a spiking neuron model, which uses a spike time dependent synaptic (STDS) plasticity rule that allows synaptic changes by discrete time steps. For this purpose it is used an integrate-and-fire neuron with recurrent local connections. The connectivity of this model has been set to 24-neighbour, so there is a high degree of parallelism. Aft...
متن کاملImplementation of Hardware Model for Spiking Neural Network
The izhikevich neuron model is well known for mimicking almost all dynamics of the biological neurons like Hodgkin-Huxley neuron models with much less hardware resources. Despite its versatility and biological plausibility, izhikevich neuron model is still not suited for a large scale neural network simulation due to its complexity compared to the simpler neuron models like integrate-and-fire m...
متن کاملSynaptic plasticity in spiking neural networks (SP2INN): a system approach
In this paper, we present a digital system called (SP/sup 2/INN) for simulating very large-scale spiking neural networks (VLSNNs) comprising, e.g., 1000000 neurons with several million connections in total. SP/sup 2/INN makes it possible to simulate VLSNN with features such as synaptic short term plasticity, long term plasticity as well as configurable connections. For such VLSNN the computatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003